

Force–Extension for DNA in a Nanoslit: Mapping between the 3D and 2D Limits

Hendrick W. de Haan *,† and Tyler N. Shendruk[‡]

[†]University of Ontario Institute of Technology, Faculty of Science, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada [‡]The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, Theoretical Physics, University of Oxford, 1 Keble Road, Oxford, OX1 3NP, United Kingdom

Supporting Information

ABSTRACT: The force–extension relation for a semiflexible polymer confined in a nanoslit is investigated. Both the effective correlation length and force–extension relation change as the chain goes from 3D (large slit heights) to 2D (tight confinement). At low forces, correlations along the polymer give an effective dimensionality. The strong force limit can be



interpolated with the weak force limit for two regimes: when confinement dominates over extensile force and vice versa. These interpolations give good agreement with simulations for all slit heights and forces. We thus generalize the Marko-Siggia force–extension relation for DNA and other semiflexible biopolymers in nanoconfinement.

 $\underset{\text{any recent studies have focused on static}^{1-9} \text{ and } \\ \underset{\text{dynamic}^{10-15}}{\text{ properties of semiflexible biopolymers, }} \\ \text{such as DNA, within nanoslits,}^{16,17} \text{ nanochannels,}^{18-21} \text{ and } \\ \text{crowded environments.}^{22-24} \text{ Here, we study polymers of } }$ contour length $L_{\rm C}$ confined within nanoslits and subjected to a stretching force F with resulting extension x. We seek to generalize the Marko-Siggia (MS) force-extension relation (FER) to confined environments. Experimental examples include DNA stretched by electric fields in nanoslits²⁵ and tug-of-war or nanopit-type devices.^{26–29} Both the $3D^{30,31}$ and the 2D³² limits of the FER have been studied extensively, but few studies investigate the crossover from 3D to 2D with confinement.³³ While scaling theories quite successfully predict conformations and dynamics of confined macromolecules,³⁴ a generalization of the FER³⁵ is needed. Chen et al. compared simulations to an FER proposed without derivation.³⁶ Since xwas defined as the distance between the ends in the direction of the force, the low-force regime was unresolved. We apply a force $\vec{F}_1 = F\hat{x}$ (where \hat{x} lies in the plane of the slit) to monomer 1, $\vec{F}_N = -F\hat{x}$ to the last monomer and define $x = (\vec{r}_1 - \vec{r}_N) \cdot \hat{x}$. This ensures that $x \to 0$ as $F \to 0$, permitting exploration of the low-force regime.

We first find an explicit form of the MS-FER in *d* discrete dimensions without explicit reference to polymer correlation length. We propose that this generalization can be applied to chains confined in nanochannels of height *h* if a suitable effective dimensionality d_{eff} is identified. For slits where *h* is sufficiently small, $d_{\text{eff}} = 2$, while $d_{\text{eff}} = 3$ when *h* is large. Intermediate values of d_{eff} represent the impact of confinement on the FER and map between the 2D to 3D limits. Suitable low-force values arise from the confined correlation length, which can be interpolated with theoretical strong-force limits. By considering the competition between confinement and applied force, we derive the FER in two limits: confinement dominated and force dominated. Comparing with the MS-FER in discrete dimensions shows that the generalization can act as a semiempirical FER with an effective dimensionality d_{eff} that depends on slit height and applied force.

Our results are substantiated by Langevin dynamics simulations of an ideal polymer of 200 monomers, with no interactions between non-neighboring monomers. The method used here follows standard implementations for a semiflexible polymer³⁷ and is described in detail in the Supporting Information (SI).

We now derive a generalized MS-FER for *d* discrete dimensions. The FER can be approximated as the interpolation between the low- and strong-force limits. At low forces, we use the Kratky–Porod model³⁸ in *d*-dimensions, which describes the polymer as an entropic spring with extension $x/L_{\rm C} = (2/d)$ $(FL_{\xi})/(k_{\rm B}T)$ (see SI). This limit depends on L_{ξ} , the correlation length between tangent vectors. The correlation length is commonly referred to as persistence length but, to avoid ambiguity with the length scale of mechanical rigidity $L_{\kappa} = \kappa/k_{\rm B}T$, we forego this term. While L_{κ} is a thermomaterial property, L_{ξ} depends on dimensionality. The two are not strictly equivalent.

In the strong-force limit, we utilize the equipartition theorem in Fourier space to find $x/L_{\rm C} = 1 - ([d - 1]/4) \times (k_{\rm B}T/[FL_{\kappa}])^{1/2}$ (see SI). Interpolating between the limits produces a generalized MS-FER:

$$F = \frac{k_{\rm B}T}{L_{\kappa}} \left(\frac{d-1}{4}\right)^2 \left[\left(1 - \frac{x}{L_{\rm C}}\right)^{-2} - 1 + \left(\frac{d}{2} \left(\frac{4}{d-1}\right)^2 \frac{L_{\kappa}}{L_{\xi}} - 2\right) \frac{x}{L_{\rm C}} \right]$$
(1)

which is consistent with $3D^{35}$ and $2D^{32,39}$ forms.

 Received:
 February 20, 2015

 Accepted:
 May 11, 2015

 Published:
 May 20, 2015

ACS Macro Letters

Reasonable agreement with simulations in 3D (indistinguishable from h = 199) is obtained for d = 3 and $L_{\xi} = L_{\kappa}$ (Figure 1). The slight overprediction in the 3D limit is a limitation of the simulations (see SI).

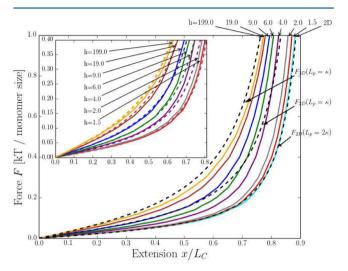


Figure 1. Simulated force–extension relation for various slit heights. Dashed lines indicate theoretical curves (eq 1). In 2D, the curves using both $L_{\xi} = L_{\kappa}$ and $L_{\xi} = 2L_{\kappa}$ are shown.

The 2D FER is shifted to larger extensions compared to 3D (Figure 1). Equation 1 fails to agree with the simulations if L_{κ} is erroneously utilized as L_{ξ} (appropriate only in 3D). Not only do the coefficients of the MS-FER change but

$$L_{\xi}(L_{\kappa}, d) = \frac{2L_{\kappa}}{d-1}$$
(2)

does as well as previously stated⁴⁰ and is explicitly verified in SI. In 2D, $L_{\xi} = 2L_{\kappa}$.

Substituting L_{ξ} into eq 1 produces the generalized MS-REF without reference to correlation length

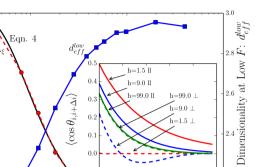
$$F(x, d) = \frac{k_{\rm B}T}{L_{\kappa}} \left(\frac{d-1}{4}\right)^2 \left[\left(1 - \frac{x}{L_{\rm C}}\right)^{-2} - 1 + 2\left(\frac{d+1}{d-1}\right) \frac{x}{L_{\rm C}} \right]$$
(3)

which is in excellent agreement with both the 3D and 2D limits (Figure 1).

Equation 3 represents a unified form of the FER for discrete dimensions. It also suggests that confinement-induced cross-over from 3D to 2D can be discussed in terms of an effective dimensionality $2 \le d_{\text{eff}} \le 3$. The polymer does not exist in a fractional dimension but rather a continuous effective dimensionality quantifies the extent to which confinement alters the FER.

We use eq 2 to define the low-force limit to be $d_{\text{eff}} \rightarrow d_{\text{eff}}^{\text{low}} = 1$ + $2L_{\kappa}/L_{\xi}(h)$. The correlation length is typically measured via $\langle \cos \theta_{i,i+\delta i} \rangle$ for the angle $\theta_{i,i+\delta i}$ between segments *i* and *i* + δi using $\langle \cos \theta_{i,i+\delta i} \rangle \equiv e^{-\delta i/L_{\xi}}$. While this approach works well in 2D and 3D, the results for intermediate heights are nonisotropic (Figure 2, inset). At intermediate heights, the parallel components remain monotonically positive, but the perpendicular component does not. Fully understanding the correlation functions of semiflexible polymers in confinement remains challenging experimentally,⁴¹⁻⁴⁴ computationally,⁴⁵⁻⁴⁷ and analytically.⁴⁸⁻⁵⁰

Following Chen et al.,³⁶ we use parallel correlation measurements to define $L_{\epsilon}(h)$, which crosses over from 3D



 Δi

Letter

Effective I

2.0

Normalized Slit Separation h/L_{κ} **Figure 2.** Correlation length (dashed circles) and corresponding effective dimensionality (solid squares) as a function of the slit height. Solid black lines fit the data for $h \leq 2L_{\kappa}$ (eq 4). Inset shows the components of correlations of direction vectors along the polymer contour.

Correlation Length L_{ξ}

to 2D with decreasing slit height (Figure 2). The black solid line is a fit for $h \leq 2 L_{\kappa}$ given by

$$L_{\xi}(L_{\kappa}, h) = L_{\kappa} \bigg[2 - e^{-0.88(L_{\kappa}/h)^{1.41}} \bigg]$$
(4)

which agrees with theory for both $h \to 0$ and $h \to \infty$. Correspondingly, $d_{\text{eff}}^{\text{low}}(L_{\xi}/L_{\kappa})$ varies smoothly from 3 to 2.

We propose that d_{eff} can be substituted into eq 3 in place of the discrete dimensionality *d* to produce a semiempirical FER for confined polymers. For now, we assume d_{eff} is only a function of L_{ξ} . This allows eq 3 to apply to finite slit confinements as a function of measured L_{ξ} (Figure 1, inset).

Good agreement is obtained for moderate extensions. Hence, the d_{eff} approach maps the crossover from 3D to 2D at low forces. However, the theory overpredicts the large-extension regime in comparison to simulations (Figure 1, inset). This suggests that expressing extension in terms of d_{eff} is only accurate for low forces

$$\lim_{F \ll k_{\rm B}T/L_{\kappa}} \frac{x}{L_{\rm C}} = \frac{4FL_{\kappa}}{d_{\rm eff}^{\rm low}(d_{\rm eff}^{\rm low} - 1)k_{\rm B}T}$$
(5)

Since taut, confined polymers can only accommodate small thermal fluctuations about the line connecting their ends,⁵¹ they feel the effect of the walls less. Hence, confinement effects diminish as force increases, causing d^{eff} to increase. Confining walls act to cut off the lowest frequencies allowed in Fourier space, which increases the average extension (see SI). We find the expression for the extension in the strong force limit and arbitrary slit confinement to be

$$\lim_{F\gg k_{\rm B}T/L_{\kappa}} \frac{x}{L_{\rm C}} = 1 - \frac{1}{2} \sqrt{\frac{k_{\rm B}T}{FL_{\kappa}}} \left[1 - \frac{1}{\pi} \tan^{-1} \left(c_0 \frac{h}{L_{\kappa}} \sqrt{\frac{k_{\rm B}T}{FL_{\kappa}}} \right) \right]$$
(6)

where c_0 controls the cutoff. This general form for the strongforce FER is in good agreement with the high-force limit of the simulations for all slit heights.

Interpolating between eqs 5 and 6 is not possible for arbitrary confinement, and we must consider the argument of the arctangent in eq 6. We expand the confinement-dominated $h/L_{\kappa} \ll (k_{\rm B}T/[FL_{\kappa}])^{1/2}$ and force dominated $h/L_{\kappa} \gg (k_{\rm B}T/[FL_{\kappa}])^{1/2}$ cases. Interpolation can be found separately in either

limit. Interpolating the force-dominated limit of the strongforce regime with eq 5 gives

$$F = \frac{k_{\rm B}T}{4L_{\kappa}} \left[\left(1 - \frac{x}{L_{\rm C}} \right)^{-2} - 8c_0 \frac{L_{\kappa}}{h} \left(1 - \frac{x}{L_{\rm C}} \right)^{-1} - \left(1 - 8c_0 \frac{L_{\kappa}}{h} \right) + 2 \left\{ \frac{d_{\rm eff}^{\rm low}(d_{\rm eff}^{\rm low} - 1)}{2} - \left(1 - 4c_0 \frac{L_{\kappa}}{h} \right) \right\} \frac{x}{L_{\rm C}} \right]$$
(7)

The cutoff $c_0 = 0.3$ is acceptable and eq 7 is highly accurate at both low and high forces when $h \gtrsim L_{\kappa}$ (Figure 3). However, the weak confinement approximation breaks down as slit height decreases.

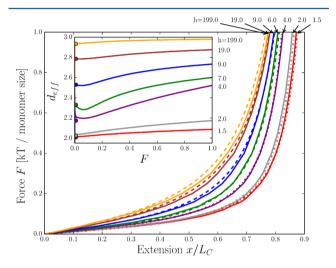


Figure 3. Simulated force extension curves (solid lines) and eq 7 for $h > L_{\kappa}$ (dashed lines) or eq 8 for $h < L_{\kappa}$ (dash-dot lines). Inset shows the dependence of effective dimensionality on force for different slit heights. Circles indicate d_{eff}^{low} values.

The other limit of eq 6 is confinement dominated. Interpolating the confinement-dominated limit with eq 5 produces

$$F = \frac{k_{\rm B}T}{16L_{\kappa}} \left[\left(1 - \frac{x}{L_{\rm c}} - \frac{1}{2\pi c_0} \frac{h}{L_{\kappa}} \right)^{-2} - \left(1 + \frac{1}{\pi c_0} \frac{h}{L_{\kappa}} \right) + 2(2d_{\rm eff}^{\rm low^2} - 2d_{\rm eff}^{\rm low} - 1) \frac{x}{L_{\rm C}} \right]$$
(8)

where $c_0 = 1.55$ to obtain acceptable agreement. Figure 3 demonstrates that this interpolation is accurate for $h \leq L_{\kappa}$.

The relative error of the interpolations (eq 7 or 8) with the simulations is $(F_i(h,x) - F_s(h,x))/F_s(h,x)$ (Figure 4). For moderate to tight confinement, the relative error is generally within ±5%. Since the results diverge in 3D due to simulation limitations (see SI), the relative error is large for weak confinement. However, the dashed black line is the relative error between the 3D limit of eq 7 and the 3D MS-FER, confirming eq 7 approaches the proper 3D limit.

Having generalized the interpolations for force extension in a slit, we return to the effective dimensionality in eq 3, now recognizing that d_{eff} depends on both slit height and force. We extract $d_{\text{eff}}(F,h)$ by fitting eq 3 to the analytical eqs 7 and 8 (Figure 3, inset). The full d_{eff} shows how the effect of confinement decays with both increasing h and F as the curves move from 2D to 3D. Further, d_{eff} demonstrates quantitatively

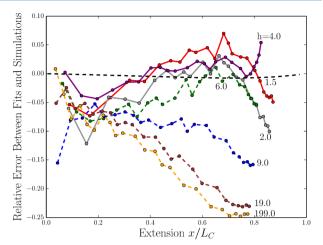


Figure 4. Relative error between simulation results and the interpolation formula given by eq 7 for $h > L_{\kappa}$ (dashed lines) or eq 8 for $h < L_{\kappa}$ (solid lines). The dashed black line is the difference between eq 7 at $d_{\text{eff}}^{\text{low}} = 3$ and the 3D Marko-Siggia relation.

that the force dependence is dramatic at intermediate heights but otherwise weak.

In conclusion, we have presented a physical picture of the force-extension relation (FER) for DNA confined within nanoslits by introducing an effective dimensionality, d_{eff} . Using $d_{\rm eff}$ in a generalized Marko-Siggia FER leads to good agreement with simulations for all slit heights and forces. At low forces, d_{eff} is determined from in-plane correlations. However, the effect of confinement is reduced for larger forces. Via interpolation, we derived FERs for force-dominated (near 3D) and confinementdominated (near 2D) systems. These formulas give good agreement with all simulation results. Comparison to the generalized Marko-Siggia yields $d_{\rm eff}$ as a function of both slit height and stretching force. For tight confinements, $d_{\text{eff}} \rightarrow 2$ but tends toward 3 as slit height increases. The effective dimensionality thus provides as a useful physical perspective on force-extension curves for biopolymers subject to natural and artificial confinement.

ASSOCIATED CONTENT

Supporting Information

Detailed description of simulation method. Simulations of $N = \{300, 400\}$ at h = 19.0 verifying no appreciable difference in the force–extension curves. Mathematical derivations of the correlation length, and the weak- and strong-force limits in *d*-dimensions subject to confinement. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsmacrolett.Sb00138.

AUTHOR INFORMATION

Corresponding Author

*E-mail: hendrick.dehaan@uoit.ca.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Simulations performed using HOOMD Blue⁵² on SHARCNET (www.sharcnet.ca). The authors gratefully acknowledge useful discussions with Alexander R. Klotz and EMBO funding to T.N.S. (ALTF181-2013).

Letter

ACS Macro Letters

REFERENCES

- (1) Lin, P.-K.; Fu, C.-C.; Chen, Y.-L.; Chen, Y.-R.; Wei, P.-K.; Kuan, C. H.; Fann, W. S. *Phys. Rev. E* 2007, *76*, 011806.
- (2) Dimitrov, D. I., Milchev, A., Binder, K., Klushin, L. I., Skvortsov, A. M. J. Chem. Phys. 2008128.
- (3) Cifra, P.; Benková, Z.; Bleha, T. J. Phys. Chem. B 2009, 113, 1843-1851.
- (4) Tang, J.; Trahan, D. W.; Doyle, P. S. *Macromolecules* 2010, 43, 3081-3089.
- (5) Dai, L.; Jones, J. J.; van der Maarel, J. R. C.; Doyle, P. S. Soft Matter 2012, 8, 2972–2982.
- (6) Cifra, P. J. Chem. Phys.. 2012136.
- (7) Hsu, H.-P.; Binder, K. Macromolecules 2013, 46, 8017-8025.
- (8) Chen, Y.-L.; Lin, Y.-H.; Chang, J.-F.; Lin, P.-k Macromolecules 2014, 47, 1199–1205.
- (9) Benkova, Z.; Namer, P.; Cifra, P. Soft Matter 2015, 11, 2279–2289.
- (10) Hsieh, C.-C.; Balducci, A.; Doyle, P. S. Macromolecules 2007, 40, 5196-5205.
- (11) Strychalski, E. A.; Levy, S. L.; Craighead, H. G. Macromolecules 2008, 41, 7716-7721.
- (12) Tang, J.; Levy, S. L.; Trahan, D. W.; Jones, J. J.; Craighead, H. G.; Doyle, P. S. *Macromolecules* **2010**, *43*, 7368–7377.
- (13) Milchev, A. J. Phys.: Condens. Matter 2011, 23, 103101.
- (14) Trahan, D. W.; Doyle, P. S. *Macromolecules* 2011, 44, 383–392.
 (15) Dai, L.; Tree, D. R.; van der Maarel, J. R. C.; Dorfman, K. D.; Doyle, P. S. *Phys. Rev. Lett.* 2013, 110, 168105.
- (16) Jo, K.; Dhingra, D. M.; Odijk, T.; de Pablo, J. J.; Graham, M. D.; Runnheim, R.; Forrest, D.; Schwartz, D. C. *Proc. Natl. Acad. Sci. U.S.A.* **2007**, *104*, 2673–2678.
- (17) Orlandini, E.; Micheletti, C. J. Biol. Phys. 2013, 39, 267-275.
- (18) Reisner, W.; Morton, K. J.; Riehn, R.; Wang, Y. M.; Yu, Z.; Rosen, M.; Sturm, J. C.; Chou, S. Y.; Frey, E.; Austin, R. H. *Phys. Rev. Lett.* **2005**, *94*, 196101.
- (19) Tree, D. R.; Wang, Y.; Dorfman, K. D. Phys. Rev. Lett. 2013, 110, 208103.
- (20) Tree, D. R.; Wang, Y.; Dorfman, K. D. *Biomicrofluidics* 2013, 7, 054118.
- (21) Vázquez-Montejo, P.; McDargh, Z.; Deserno, M.; Guven, J. arXiv preprint arXiv:1503.01023 2015.
- (22) Shin, J.; Cherstvy, A. G.; Metzler, R. New J. Phys. 2014, 16, 053047.
- (23) Shin, J.; Cherstvy, A. G.; Metzler, R. ACS Macro Lett. 2015, 4, 202–206.
- (24) Shendruk, T. N.; Bertrand, M.; de Haan, H. W.; Harden, J. L.; Slater, G. W. *Biophys. J.* **2015**, *108*, 810–820.
- (25) Sriram, K. K.; Y.C, Y. L.; Yeh, J. W.; Chou, C. Nucleic Acids Res. 2014, 42, e85.
- (26) Reisner, W.; Larsen, N. B.; Flyvbjerg, H.; Tegenfeldt, J. O.; Kristensen, A. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 79-84.
- (27) Klotz, A. R.; Brandāo, H. B.; Reisner, W. W. Macromolecules **2012**, 45, 2122–2127.
- (28) Yeh, J.-W.; Taloni, A.; Chen, Y.-L.; Chou, C.-F. Nano Lett. 2012, 12, 1597–1602.
- (29) Kounovsky-Shafer, K. L.; Hernández-Ortiz, J. P.; Jo, K.; Odijk, T.; de Pablo, J. J.; Schwartz, D. C. *Macromolecules* **2013**, *46*, 8356–8368.
- (30) Bustamante, C.; Smith, S. B.; Liphardt, J.; Smith, D. Curr. Opin. Struct. Biol. 2000, 10, 279–285.
- (31) Bustamante, C.; Bryant, Z.; Smith, S. B. *Nature* **2003**, *421*, 423–427.
- (32) Hsu, H.-P.; Paul, W.; Binder, K. Europhys. Lett. 2011, 95, 68004.
 (33) Taloni, A.; Yeh, J.-W.; Chou, C.-F. Macromolecules 2013, 46, 7989–8002.
- (34) Tree, D. R.; Reinhart, W. F.; Dorfman, K. D. Macromolecules 2014, 47, 3672-3684.
- (35) Marko, J. F.; Siggia, E. D. Macromolecules 1995, 28, 8759–8770.
 (36) Chen, Y.-L.; Lin, P.-k.; Chou, C.-F. Macromolecules 2010, 43, 10204–10207.

- (37) Slater, G. W.; Holm, C.; Chubynsky, M. V.; de Haan, H. W.;
- Dubé, A.; Grass, K.; Hickey, O. A.; Kingsburry, C.; Sean, D.; Shendruk, T. N.; Zhan, L. *Electrophoresis* **2009**, *30*, 792–818.
- (38) Kratky, O.; Porod, G. Rec. Trav. Chim. Pays-Bas 1949, 68, 1106-1122.
- (39) Prasad, A.; Hori, Y.; Kondev, J. Phys. Rev. E 2005, 72, 041918.
 (40) Huang, A.; Adhikari, R.; Bhattacharya, A.; Binder, K. Europhys. Lett. 2014, 105, 18002.
- (41) Köster, S.; Steinhauser, D.; Pfohl, T. J. Phys.: Condens. Matter 2005, 17, S4091.
- (42) Köster, S.; Stark, H.; Pfohl, T.; Kierfeld, J. Biophys. Rev. Lett. 2007, 02, 155-166.
- (43) Köster, S.; Kierfeld, J.; Pfohl, T. Eur. Phys. J. E 2008, 25, 439-449.
- (44) Nöding, B.; Köster, S. Phys. Rev. Lett. 2012, 108, 088101.
- (45) Cifra, P.; Benková, Z.; Bleha, T. J. Phys. Chem. B 2008, 112, 1367-1375.
- (46) Cifra, P.; Benkova, Z.; Bleha, T. Faraday Discuss. 2008, 139, 377-392.
- (47) Benková, Z.; Cifra, P. Macromolecules 2012, 45, 2597-2608.
- (48) Harnau, L.; Reineker, P. Phys. Rev. E 1999, 60, 4671-4676.
- (49) Choi, M. C.; Santangelo, C. D.; Pelletier, O.; Kim, J. H.; Kwon, S. Y.; Wen, Z.; Li, Y.; Pincus, P. A.; Safinya, C. R.; Kim, M. W. *Macromolecules* **2005**, *38*, 9882–9884.
- (50) Wagner, F.; Lattanzi, G.; Frey, E. Phys. Rev. E 2007, 75, 050902.
- (51) Baba, T.; Sakaue, T.; Murayama, Y. Macromolecules 2012, 45, 2857–2862.
- (52) Anderson, J. A.; Lorenz, C. D.; Travesset, A. J. Comput. Phys. 2008, 227, 5342-5359.