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ABSTRACT: The force−extension relation for a semiflexible polymer
confined in a nanoslit is investigated. Both the effective correlation length
and force−extension relation change as the chain goes from 3D (large slit
heights) to 2D (tight confinement). At low forces, correlations along the
polymer give an effective dimensionality. The strong force limit can be
interpolated with the weak force limit for two regimes: when confinement dominates over extensile force and vice versa. These
interpolations give good agreement with simulations for all slit heights and forces. We thus generalize the Marko-Siggia force−
extension relation for DNA and other semiflexible biopolymers in nanoconfinement.

Many recent studies have focused on static1−9 and
dynamic10−15 properties of semiflexible biopolymers,

such as DNA, within nanoslits,16,17 nanochannels,18−21 and
crowded environments.22−24 Here, we study polymers of
contour length LC confined within nanoslits and subjected to
a stretching force F with resulting extension x. We seek to
generalize the Marko-Siggia (MS) force−extension relation
(FER) to confined environments. Experimental examples
include DNA stretched by electric fields in nanoslits25 and
tug-of-war or nanopit-type devices.26−29 Both the 3D30,31 and
the 2D32 limits of the FER have been studied extensively, but
few studies investigate the crossover from 3D to 2D with
confinement.33 While scaling theories quite successfully predict
conformations and dynamics of confined macromolecules,34 a
generalization of the FER35 is needed. Chen et al. compared
simulations to an FER proposed without derivation.36 Since x
was defined as the distance between the ends in the direction of
the force, the low-force regime was unresolved. We apply a
force F⃗1 = Fx ̂̂ (where x ̂ lies in the plane of the slit) to monomer
1, F⃗N = −Fx ̂̂ to the last monomer and define x = (r1⃗ − rN⃗) · x ̂.
This ensures that x→ 0 as F→ 0, permitting exploration of the
low-force regime.
We first find an explicit form of the MS-FER in d discrete

dimensions without explicit reference to polymer correlation
length. We propose that this generalization can be applied to
chains confined in nanochannels of height h if a suitable
effective dimensionality deff is identified. For slits where h is
sufficiently small, deff = 2, while deff = 3 when h is large.
Intermediate values of deff represent the impact of confinement
on the FER and map between the 2D to 3D limits. Suitable
low-force values arise from the confined correlation length,
which can be interpolated with theoretical strong-force limits.
By considering the competition between confinement and
applied force, we derive the FER in two limits: confinement
dominated and force dominated. Comparing with the MS-FER

in discrete dimensions shows that the generalization can act as a
semiempirical FER with an effective dimensionality deff that
depends on slit height and applied force.
Our results are substantiated by Langevin dynamics

simulations of an ideal polymer of 200 monomers, with no
interactions between non-neighboring monomers. The method
used here follows standard implementations for a semiflexible
polymer37 and is described in detail in the Supporting
Information (SI).
We now derive a generalized MS-FER for d discrete

dimensions. The FER can be approximated as the interpolation
between the low- and strong-force limits. At low forces, we use
the Kratky−Porod model38 in d-dimensions, which describes
the polymer as an entropic spring with extension x/LC = (2/d)
(FLξ)/(kBT) (see SI). This limit depends on Lξ, the correlation
length between tangent vectors. The correlation length is
commonly referred to as persistence length but, to avoid
ambiguity with the length scale of mechanical rigidity Lκ = κ/
kBT, we forego this term. While Lκ is a thermomaterial
property, Lξ depends on dimensionality. The two are not
strictly equivalent.
In the strong-force limit, we utilize the equipartition theorem

in Fourier space to find x/LC = 1 − ([d − 1]/4) × (kBT/
[FLκ])

1/2 (see SI). Interpolating between the limits produces a
generalized MS-FER:
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which is consistent with 3D35 and 2D32,39 forms.
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Reasonable agreement with simulations in 3D (indistinguish-
able from h = 199) is obtained for d = 3 and Lξ = Lκ (Figure 1).
The slight overprediction in the 3D limit is a limitation of the
simulations (see SI).

The 2D FER is shifted to larger extensions compared to 3D
(Figure 1). Equation 1 fails to agree with the simulations if Lκ is
erroneously utilized as Lξ (appropriate only in 3D). Not only
do the coefficients of the MS-FER change but
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does as well as previously stated40 and is explicitly verified in SI.
In 2D, Lξ = 2Lκ.
Substituting Lξ into eq 1 produces the generalized MS-REF

without reference to correlation length
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which is in excellent agreement with both the 3D and 2D limits
(Figure 1).
Equation 3 represents a unified form of the FER for discrete

dimensions. It also suggests that confinement-induced cross-
over from 3D to 2D can be discussed in terms of an effective
dimensionality 2 ≤ deff ≤ 3. The polymer does not exist in a
fractional dimension but rather a continuous effective
dimensionality quantifies the extent to which confinement
alters the FER.
We use eq 2 to define the low-force limit to be deff → deff

low = 1
+ 2Lκ/Lξ(h). The correlation length is typically measured via
⟨cos θi,i+δi⟩ for the angle θi,i+δi between segments i and i + δi
using ⟨cos θi,i+δi⟩ ≡ e−δi/Lξ. While this approach works well in
2D and 3D, the results for intermediate heights are non-
isotropic (Figure 2, inset). At intermediate heights, the parallel
components remain monotonically positive, but the perpen-
dicular component does not. Fully understanding the
correlation functions of semiflexible polymers in confinement
remains challenging experimentally,41−44 computationally,45−47

and analytically.48−50

Following Chen et al.,36 we use parallel correlation
measurements to define Lξ(h), which crosses over from 3D

to 2D with decreasing slit height (Figure 2). The black solid
line is a fit for h ≤ 2 Lκ given by

= −ξ κ κ
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(4)

which agrees with theory for both h → 0 and h → ∞.
Correspondingly, deff

low(Lξ/Lκ) varies smoothly from 3 to 2.
We propose that deff can be substituted into eq 3 in place of

the discrete dimensionality d to produce a semiempirical FER
for confined polymers. For now, we assume deff is only a
function of Lξ. This allows eq 3 to apply to finite slit
confinements as a function of measured Lξ (Figure 1, inset).
Good agreement is obtained for moderate extensions. Hence,

the deff approach maps the crossover from 3D to 2D at low
forces. However, the theory overpredicts the large-extension
regime in comparison to simulations (Figure 1, inset). This
suggests that expressing extension in terms of deff is only
accurate for low forces

=
−

κ

≪ κ

x
L

FL
d d k T

lim
4

( 1)F k T L/ C eff
low

eff
low

BB (5)

Since taut, confined polymers can only accommodate small
thermal fluctuations about the line connecting their ends,51

they feel the effect of the walls less. Hence, confinement effects
diminish as force increases, causing deff to increase. Confining
walls act to cut off the lowest frequencies allowed in Fourier
space, which increases the average extension (see SI). We find
the expression for the extension in the strong force limit and
arbitrary slit confinement to be
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where c0 controls the cutoff. This general form for the strong-
force FER is in good agreement with the high-force limit of the
simulations for all slit heights.
Interpolating between eqs 5 and 6 is not possible for

arbitrary confinement, and we must consider the argument of
the arctangent in eq 6. We expand the confinement-dominated
h/Lκ ≪ (kBT/[FLκ])

1/2 and force dominated h/Lκ ≫ (kBT/
[FLκ])

1/2 cases. Interpolation can be found separately in either

Figure 1. Simulated force−extension relation for various slit heights.
Dashed lines indicate theoretical curves (eq 1). In 2D, the curves using
both Lξ = Lκ and Lξ = 2Lκ are shown.

Figure 2. Correlation length (dashed circles) and corresponding
effective dimensionality (solid squares) as a function of the slit height.
Solid black lines fit the data for h ≤ 2Lκ (eq 4). Inset shows the
components of correlations of direction vectors along the polymer
contour.
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limit. Interpolating the force-dominated limit of the strong-
force regime with eq 5 gives
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The cutoff c0 = 0.3 is acceptable and eq 7 is highly accurate at
both low and high forces when h ≳ Lκ (Figure 3). However, the
weak confinement approximation breaks down as slit height
decreases.

The other limit of eq 6 is confinement dominated.
Interpolating the confinement-dominated limit with eq 5
produces

π π
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where c0 = 1.55 to obtain acceptable agreement. Figure 3
demonstrates that this interpolation is accurate for h ≲ Lκ.
The relative error of the interpolations (eq 7 or 8) with the

simulations is (Fi(h,x) − Fs(h,x))/Fs(h,x) (Figure 4). For
moderate to tight confinement, the relative error is generally
within ±5%. Since the results diverge in 3D due to simulation
limitations (see SI), the relative error is large for weak
confinement. However, the dashed black line is the relative
error between the 3D limit of eq 7 and the 3D MS-FER,
confirming eq 7 approaches the proper 3D limit.
Having generalized the interpolations for force extension in a

slit, we return to the effective dimensionality in eq 3, now
recognizing that deff depends on both slit height and force. We
extract deff(F,h) by fitting eq 3 to the analytical eqs 7 and 8
(Figure 3, inset). The full deff shows how the effect of
confinement decays with both increasing h and F as the curves
move from 2D to 3D. Further, deff demonstrates quantitatively

that the force dependence is dramatic at intermediate heights
but otherwise weak.
In conclusion, we have presented a physical picture of the

force−extension relation (FER) for DNA confined within
nanoslits by introducing an effective dimensionality, deff. Using
deff in a generalized Marko-Siggia FER leads to good agreement
with simulations for all slit heights and forces. At low forces, deff
is determined from in-plane correlations. However, the effect of
confinement is reduced for larger forces. Via interpolation, we
derived FERs for force-dominated (near 3D) and confinement-
dominated (near 2D) systems. These formulas give good
agreement with all simulation results. Comparison to the
generalized Marko-Siggia yields deff as a function of both slit
height and stretching force. For tight confinements, deff → 2 but
tends toward 3 as slit height increases. The effective
dimensionality thus provides as a useful physical perspective
on force−extension curves for biopolymers subject to natural
and artificial confinement.
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Figure 3. Simulated force extension curves (solid lines) and eq 7 for h
> Lκ (dashed lines) or eq 8 for h < Lκ (dash-dot lines). Inset shows the
dependence of effective dimensionality on force for different slit
heights. Circles indicate deff

low values.

Figure 4. Relative error between simulation results and the
interpolation formula given by eq 7 for h > Lκ (dashed lines) or eq
8 for h < Lκ (solid lines). The dashed black line is the difference
between eq 7 at deff

low = 3 and the 3D Marko-Siggia relation.
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(44) Nöding, B.; Köster, S. Phys. Rev. Lett. 2012, 108, 088101.
(45) Cifra, P.; Benkova,́ Z.; Bleha, T. J. Phys. Chem. B 2008, 112,
1367−1375.
(46) Cifra, P.; Benkova, Z.; Bleha, T. Faraday Discuss. 2008, 139,
377−392.
(47) Benkova,́ Z.; Cifra, P. Macromolecules 2012, 45, 2597−2608.
(48) Harnau, L.; Reineker, P. Phys. Rev. E 1999, 60, 4671−4676.
(49) Choi, M. C.; Santangelo, C. D.; Pelletier, O.; Kim, J. H.; Kwon,
S. Y.; Wen, Z.; Li, Y.; Pincus, P. A.; Safinya, C. R.; Kim, M. W.
Macromolecules 2005, 38, 9882−9884.
(50) Wagner, F.; Lattanzi, G.; Frey, E. Phys. Rev. E 2007, 75, 050902.
(51) Baba, T.; Sakaue, T.; Murayama, Y. Macromolecules 2012, 45,
2857−2862.
(52) Anderson, J. A.; Lorenz, C. D.; Travesset, A. J. Comput. Phys.
2008, 227, 5342−5359.

ACS Macro Letters Letter

DOI: 10.1021/acsmacrolett.5b00138
ACS Macro Lett. 2015, 4, 632−635

635

http://dx.doi.org/10.1021/acsmacrolett.5b00138

